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Abstract-We consider a rigid elliptic disc embedded in a homogeneous anisotropic elastic whole space and
bonded to it. The elastic field is determined corresponding to an arbitrary displacement of the disc, particular
attention being devoted to the stress distribution on either side of the disc. The problem of a uniform stress field
perturbed by the disc is also considered.

1. INTRODUCTION

We consider a rigid elliptic disc embedded in a whole space of homogeneous generally anisotropic
elastic material and bonded to it. The greater part of this paper concerns the determination of the
elastic field induced in the whole space when the disc is given an arbitrary displacement (translation
plus rotation), but consideration is also given to the problem of the disc perturbing a uniform stress
field, this problem being somewhat analogous to that of the rotation of the disc.

The foregoing problems have been dealt with for the case of isotropic media, and we now give
some references to work in this area. Kasser and Sih [1] have considered the problem of translation of
the disc and the problem of perturbation of a uniform stress field by the disc. Lur'e [2] has examined
the problem of an ellipsoidal inclusion undergoing translation and rotation. The work of
Eshelby[3,4] deals inter alia with the perturbation of a uniform stress field by an ellipsoidal
inclusion.

The methods used in this paper are based on the work of Willis [5, 6] in somewhat analogous
contexts. In [5] he considers the problem of a rigid punch of elliptic cross-section indenting a
homogeneous generally anisotropic half space; he established a theorem therein which overcomes
the apparent difficulty of the unavailability, in closed form, of the solution to the fundamental or
point force problem. This latter theorem again forms the basis for the solution of problems
concerning an elliptic crack in a homogeneous generally anisotropic elastic whole space [6].

The plan of the paper is as follows. In Sections 2-5 the problem concerning the displacement of
the disc is dealt with, while Section 6 deals with the problem of the perturbation by the disc of a
uniform stress field. In Section 2 the displacement boundary value problem is formulated in the
former case, while Section 3outlines the basis forits solution. To begin with, the displacementfield is
represented by a superposition or a convolution integral involving an unknown body force layer
distribution coinciding with the disc, together with the Green's functions corresponding to
displacements due to point forces in the full space without inclusion. Guided by previous work, a
body force layer distribution is postulated which involves nine undetermined constants. It is then
shown that the displacement field thus obtained reduces to the required form on the disc provided
that the nine constants are chosen suitably; they involve line integrals of quantities dependent on
(readily obtainable)Fourier transforms of the Green's functions. The theorem ofWillis [5] enables us
to overcome the unavailability, in general, of the Green's functions in closed form. In Section 4 a
detailed examination is made of the special case when the elliptic disc undergoes a translation only.
The displacements are given in terms of reasonably tractable line integrals involving the Fourier
transforms of the Green's functions, and the resultant forces required to translate the disc are
obtained as integrals of a similar type. The stresses on either side of the disc are investigated and are
shown to be remarkable in their universality: suppose that the elliptic disc is given by

l-x/la/-x/la/>O, X3=O,

with respect to rectangular cartesian coordinates Ox" and suppose that P, are the corresponding
components of the resultant forces required to translate the disc, then the cartesian stress
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components on either side of the disc X3 = O± are given by

respectively. Likewise, in Section 4detailed examination is made of the complementary case where
the disc undergoes rotation about its centre. Again the displacements are given in terms ofreasonably
tractable integrals involving Fourier transforms of the Green's function, as are also the torques
necessary to accomplish the rotations. The stresses on either side of the disc are investigated, and
whereas it is not possible to express them in universal terms, analogous to the case of translation, a
certainamount ofprogress in this direction is possible if the existence ofplanes ofelastic symmetry is
assumed.

2. FORMULATION OF THE PROBLEM

Let (X., X2, X3) be rectangular cartesian co-ordinates. A rigid elliptic disc defined by

(2.1)

is embedded in a full space of generally homogeneous anisotropic elastic material and is bonded to it.
As usual, Tij! Ui denote the (cartesian) stress components anddisplacementcomponents respectively,
the two being related by

in which the constants Cijkf satisfy

(2.2)

Cijkf = Cjik/, Cijkf = Cijfk, Cijkf = Ck/ij' (2.3)

The summation convention applies throughout, Latin and Greek indices taking the values I, 2, 3
and I, 2 respectively, unless otherwise stated or implied.

We consider the problem of determining the elastic field induced by a general movement of the
disc-a displacement ai and a rotation Wi about the origin, say. Mathematically, the displacement
boundary value problem is that of solving

(2.4)

subject to the boundary consitions

and

Ui ~O as XiXi ~OO,

eijk being the usual permutation symbol.

(2.5)

3. BASIS FOR SOLUTION

Let VSi(X., X2, X3) be the ith component of displacement in the elastic whole space (without
inclusion) due to a unit point force acting at the origin in the sth direction and vanishing at infinity. We
have

(3.1)

Vsk ~O as XiXi ~OO,

i)(X.) etc. denoting Dirac deltas, i)si being a Kronecker delta. We note that, as a consequence of (2.3h.
Vsi = Vis, The displacement field U;, vanishing at infinity, which is induced in the elastic whole space
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(without inclusion) by a body force field F;(Xh X2, X3) confined to a finite part of the space (say) is
given by the superposition

Our problem is partially solved if we can determine a suitable body force field Fs to simulate the
effect ofthedisplaceddisc. The solution to the problem in the isotropic caseandthe work of Willis [5]
suggest the choice

where H denotes the Heaviside unit function, and where d., dsa are constants to be determined.
Using (3.2), thedisplacementfield induced bythe above mentionedbodyforce field isgivenby

Ui= JJ(ds+dsax~)(l-x;2/a/-x;/a/)-t/2vsbl-X;,X2-X~,X3)dx;dx~, (3.4)

E'

where E' denotes the domain of the ellipse 1- x;2/ai- X;2/a/ > O. We must proceed to show that
this quantity can be reconciled with the boundary conditions on the disc. An apparent obstacle to
further progress is the fact that the "Green's functions" VsI are not known in closed form for a
generally anisotropic elastic medium; among the conventional elastic symmetries the transversely
isotropic medium appears to be the neplus ultra in this regard. However, it is possible to proceed in a
fashion analogous to Willis [5]. Defining the Fourier Transform by

(3.5)

and transforming (3.1), we obtain

(3.6)

where

(3.7)

Using (3.6) and inverting the transforms, we obtain

(3.8)

In the above, !lSi means thecofactorof LSi> L means the determinant ILij I,and thebracketedUh ~2' ~3)

merely indicates dependence on these variables.
The integration with respect to ~3 can be performed using Cauchy's theorem. The quantity LSI/L

is homogeneous of degree -2 in (~h ~2' 6) and therefore tends to zero as 1~31-+ 00. Therefore, for
X3 > 0 we may close the contour in the lower half of the complex ~3 plane using Jordan's lemma to
obtain

(3.9)

(3.10)
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with negative imaginary parts. The six roots of this equation cannot be real and therefore occur in
complex conjugate pairs, this being a consequence of the ellipticity of the differential operator in
(2.4). For X3 < 0, the contour is closed in the upper half of the complex plane, and accordingly [3 N

replaces ~3Non the right-hand side of (3.9) while the initial minus sign is dropped. (The usual notation
for complex conjugate is used throughout). The case X3 = 0 is obtained from either of the above by
letting X3~0.

Introducing the notation

(3.11)

and using the foregoing paragraph together with (3.8) gives

Uk = (87T
3)-1 f f (d. +d.ax~)(l- X;2/aI2

E'

for X3 "" O. (3.12)

Asomewhat similar representation may be written for X3 :s;; 0; similarly, in many cases occurring
subsequently, representations for displacements and associated quantities are recorded for X3 > 0
only, in the interests of brevity.

To make further progress, we appeal to a result proved by Willis [5] in connection with the
problem of indentation of a generally anisotropic half-space by a smooth punch.

Let f(~t, ~2) and m(~t, ~2) have the properties

(3.13)

and let p and q be positive integers or zero such that p "" q, then

(2 )-If f ('/ +. '/ )P('/ .'/ )q(1 12/ 2 12/ 2)- 1/2 d ' d '7T XI al IX2 a2 XI al-IX2 a2 -XI al -X2 a2 XI X2

E'

(3.14)

and

111 = cos 41, 112 = sin 41,

and

while
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Joo = l/210g {(g +1)/(g -l)}

J IO = 1- I12g log {(g + l)/(g - I)}.

675

(3.16)

It is readily verified that g3N and Pmk(~N) have the properties stipulated for m(gl, g2) and !(gl, g2)
respectively. Using the foregoing observations in conjunction with Willis' results (3.13)-(3.16), we
can show that the displacement reduces to a first degree polynomial in Xi on the disc, thus solving the
problem in principle. It proves convenient to make the detailed examination of the problem of
translation and rotation separately.

4. TRANSLATION OF THE DISC

For the moment we take dsa =0; this amounts to examining the translation ofthedisc Le. putting
WJ =0.

In view of the last paragraph of Section 3, (3.12) yields

(4.1)

where

It is shown in Appendix A that

3 3

~ Pmk{~N(gl, g2)} = ~ Pmk{~N(-gl, -g&
N-t N-I

Now

log {(1- 'T/IXt!al - 'T/2x2Ia2)/(-1- 'T/txl/al - 'T/2X2Ia2)}

= log 1(1- 'T/IXl/at - 'T/2X2Ia2)/(1 + 'T/IXl/at + 'T/2X2Ia2)!- i7T

(4.2)

(4.3)

(4.4)

for points (x I, X2) on the disc, the firstterm on the right-hand side being odd in ('T/ I, 'T/2) for such points.
Using this, the eveness in (gl, g2) ofthe first term in (4.3) together with (4.1), we see that the boundary
condition (2.5) with WJ = 0 is satisfied if

(4.5)

where

(4.6)

The system of eqns (4.5) is determinate, the matrix Ckm being positive definite; see Appendix B.
The problem of translation of the disc is now solved in principle, the displacement field being

given by (4.1) in terms of quite tractable integrals. Further, the resultant forces necessary to
accomplish the specified translations are given by

(4.7)

on using (3.3), and their evaluation in particularcases is amatter ofcalculating the integrals (4.6); this
can always be done, by numerical methods if necessary.

It is evident from (4.5)-(4.7) that translation of the disc in anyone co-ordinate direction in a
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generally anisotropic material (i.e. one which does not exhibit any elastic symmetry) requires
resultant forces in all three such directions. Suppose, however, that there are planes of elastic
symmetry perpendicular to the X3 axis, then

Ca IJ3B = Ca 333 =0, (a, (3, 5 = 1,2)

and it follows that

If al = a2 =0, a3 #- O-a translation in the X3 direction only-it follows that d , = d2= O. Hence the
resultant force which must be applied to the disc is in the X3 direction also. Similarconclusions may be
drawn if there are planes ofelastic symmetry perpendicular to the other co-ordinatedirections.

We now investigate the stress distribution on either side of the disc. Let q+, q_ denote the
values of the quantity q on the positive and negative sides of the disc X3 = O±. It is readily verified
that

(4.8)

by differentiating (2.5), or otherwise. Further, it follows from (4.1) that

(4.9)

where." = (7/1,7/2) and y = (Xt/a" x2/a2); aUk/aX3)- has the same form with opposite sign while iN
replaces ~N. Writing

3
i(27r)~' L PmkUN (7/I/at, 7/2/a2)}~3N(7/I/al' 7/2/a2)

N-I

it follows from Appendix C that

(4.10)

where 1c3mk31 denotes the determinant of the matrix with elements C3mk3 and b3mk3 denote the
corresponding cofactors. Since it is readily established that

(4.12)

for points on the disc, it follows from (4.9)-(4.11) and (4.3) that

(4.13)

the corresponding quantity with negative suffix being of the sameform with opposite sign. In view of
(2.2), (4.8), (4.13) it follows that

T3;}± ==+=dmC3ik3b3mk3/{/C3n131(l- x//a/ - x//a/)1/2}

= =+= d;/{2(l- x//a,2 - x//a/)1/2}

= =+=Pi/{41Tat a2(l- x//at2- x//a/)1/2}

where we have used the result

together with (4.7).

(4.14)

(4.15)
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The result (4.14) is remarkable, showing that stress components on either side of the disc are
independent of the elastic constants when the disc undergoes translational movement due to
resultant forces Pi' An analogous result has been noted by Willis [5] in connection with the smooth
indentation of an anisotropic elastic half space by a rigid punch. The ellipse is almost certainly
atypical in this respect. The following is yet another result of a similar nature, apparently not alluded
to in standard treatises on electricity, but derivable by elementary linear transformations: a
conducting elliptic disc with semi-axes all a2 embedded in a generally anisotropic dielectric has
charge density

when charged to amount Q, the electric field at infinity being zero. The derivation of this result by
elementary linear transformations depends crucially on the property that an ellipse transforms into
another ellipse. This suggests very strongly that in regard to the "constant-independence", both in
the electrostatic and elastostatic examples, the ellipse is atypical.t

5. ROTATION OF DISC

We now examine the rotation of the disc, putting ds = 0 in (3.3); this amounts to putting as = O.
Rearranging (3.12) we obtain

Uk = (8'7T 3t l JJ dmlJX~(l- X;2/ a / - X;2/ a/)-1/2 dx; dx;
E'

(5.1)

A similar expression holds for X3 < 0 with negative sign and [3N replacing ~3N.

Recalling the condition (3.13) and using (3.14)-(3.17) we obtain

2 (2~ 3

Uk = -i(8'7T
2t l

~I dmaaa Jo ~I Pmd~N('T/I/all 'T/2/a2)}

. gN log {(gN +1)/(gN - 1)}'T/a dcP for X3;3 0, (5.2)

with a similarresultfor X3 < owith negative sign and [N replacing ~N. Hencefor points on thedisc

(5.3)

Adopting the notation

(5.4)

and letting f denote the column vector with elements

and {} that with elements

tOne cannot use linear transformations to derive the above results (for agenerally anisotropic elastic medium) from those of
an isotropic medium unless nine somewhat artificial relations exist between the elastic constants [7].

SS Vol. 12. No. 9/1O-E
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we find that the boundary conditions for rotation, (2.5) with aj = 0, are satisfied provided

Kf=fi

where we have used (5.3). This is a determinate system as the 6 x 6 matrix K is non-singular, see
Appendix B.

Thus the problem of rotation of the disc is solved in principle, the displacement field being given
by (5.J )in terms ofquite tractable integrals. The torques about theorigin necessary toaccomplish the
specified rotation are given by

Their evaluation in particular cases is a matter of calculating the integrals (5.4); this can always be
done by numerical methods if necessary.

We now investigate some oftheconsequences due to the existence of planes ofelastic symmetry.

OX1X2 a plane of symmetry. Here

and eqn (5.5) separates into two independent systems in (d3h dn) and (dll , d12 , d2h dn ). If
WI = W2 0 then d 31 = d32 =0 and hence no torques Oh O2 are required. If W3 =0, all the dsa other
than d3h d32 are zero, and no 0 3 is required.

OXIX3 a plane of symmetry. Here

and (5.5) uncouples into two independent systems in (d ll , d3h d22) and (d2h d12 , d32). If W2 = 0 then
dll =d31 := d22 := 0 and in view of (5.6h, no torque component O2 is required. If WI =W3 =0 then
d21 =d12 =d32 =0 and no torque component 0 3 is required.

OX2X3 a plane of symmetry. This case is clearly analogous to the last one and details are,
therefore, superfluous.

Orthotropic symmetry. Suppose there is symmetry with respect to all three co-ordinate planes
(symmetry with respect to any two implies symmetry with respect to the third). In this case
dll =dl2 =O. If WI =j: 0, W2 =W3 =othen d32 =j: oand all the others are zero. IfW2 =j: 0, WI =W3 =Othen
d31 =j: 0 and all the others are zero. Hence a rotation of the disc about the XI axis alone can be
accomplished by means of a torque 0 I alone, and arotation about the X2 axis can be accomplished by
means of a torque O2 alone. In fact,

(5.7)

In the case of W3 "# 0, WI =W2 =0, d2h d12 and hence 0 3 are calculated from

(5.8)

We now investigate the stress distribution on either side of the disc, the suffixes +and - having
the same significance as in the last section. Differentiating (2.5). with respect to X" gives

(5.9)

the derivative being continuous across the disc. This result can also be obtained by differentiating
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(5.2). Differentiating (5.2) with respect to X3 and letting X3 -+ 0+ on the disc yields

679

2 r21T 3

OUk/ OX3)+ = i(41T
2t l~I dmaaa Jo ];1 Pmk{~N('T/./ah 'T/2/a2)U3

N
('T/I/ah 'T/2/a2)

x ['1 . y{('1 . y)2 - W· +(1/2) log {(1- '1 . y)/(-1 - T/ . Y)}]T/a dc{>. (5.10)

Recalling (4.4), (4.10) and (4.11), (5.10) reduces to

A similar analysis shows that the corresponding quantity with negative suffix has the same form but
the first term of (5.11) has negative sign. It is readily established that

(5.12)

Using this in connection with (5.11) et seq. yields

(5.13)

Using (2.2), (4.16), (5.9), (5.13) together with the definition of f we obtain (for points on either side of
the disc X3 = O±)

where

We now investigate the way in which (5.14) reduces if one or more of the co-ordinate axes are
perpendicular to planes of elastic symmetry. Suppose that the OXIX2 plane is one of elastic
symmetry. Recalling (3.7) we see that

Hence, in view of (4.10), we have

and, in view of (4.11), it follows that

(5.15)

Suppose W3 = 0 in addition, then d31 and d32 are the only non vanishing d.a , and recalling (5.6)•.2'
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(5.16)

The result (5.16)1 is remarkable, being independent of the elastic constants; as in the case of (4.14), it
appears likely that the ellipse is atypical in this respect.

Suppose WI = Wz = 0 (in addition to OX IXZ being a plane of elastic symmetry), then d31 = d32 = 0
and

(5.17)

Suppose now that the ellipse degenerates to a circle (a 1 = az = a, say), and suppose that the elastic
material is tranversely isotropic with respect to the OX3 axis, it follows from (5.4), (5.6), (5.8) and
(5.17) thatthe polar(r, 8) components ofthe shear stress on either side ofthe circular disc are given by

These expressions are also independent of the elastic constants.
Finally we remark that if OXZX3 is a plane of elastic symmetry it follows that I:"k = 0; also, if

OXIX3 is a plane of elastic symmetry it follows that I;"k = o.

6. DISC PERTURBING UNIFORM STRESS FIELD

The problem of a rigid elliptic disc perturbing a uniform stress field deserves mention as it is
amenable to the same techniques used for the problem of rotation. The problem is to solve (2.4)
subject to

and

(6.1)

where Eii are constants.
Writing

(6.2)

We have

(6.3)

subject to

(6.4)

Dropping the primes from u; it is evident that (5.l) provides a suitable representation for U;, the
boundary condition (6.4) being satisfied on choosing dsa from

Kf= -E,

where E denotes the column vector with elements

(6.5)
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The stresses on either side of the disc X3 = O± can be found in a manner similar to (5.14). It is
found that

As in the case ofrotation, the existence of planes ofelastic symmetry coincidingwith the co-ordinate
planes reduces the above to simpler form.

The result (3.14) can also be made to yield the distrubed elastic field due to an embedded rigid
elliptic disc in an infinite medium when the stress at infinity is a polynomial in XI, X2, X3 but this is not
pursued here.
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APPENDIX A
Consider f r (,;em.!L )({" {2' {,) d{, where r is a simple closed contour in the complex {, plane enclosing all the zeros of

L({.) = 0; as r expands to infinity it is apparent that the integral tends to zero and so the sum of the residues of the integrand
vanishes (Cauchy's Theorem) i.e.

(At)

It is clear that if {,N ({" {2) is a root of L({,) = 0, so is _{.N(-{" -{,). Since {,N(-{" -{2) has a negative imaginary part by
definition, -{,N(-{" -{2) has a positive imaginary part, and

(A2)

for some M not necessarily equal to N, as the roots of L ({,) = 0 occur in complex conjugate pairs. Also

since Pm.({"{2,{.) is a homogeneous rational function of degree -I in ({" {2' {,). It follows from (AIHA3) that

, ,
L Pmk {{,,{2,{,N({,,{2)} = L Pm.{-{,,_{,,{,N(_{"-{2)}'
N-I N-I

APPENDIX B
Since the energy stored in a deformed elastic material is positive definite, it follows that

the equality sign occurring if and only if a, = WI = O. In the case of translation alone (WI = 0), it follows that

(A3)

(A4)

on remembering F; = 21TO,a2d,; the equality sign holds if and only if d, = O. Thus the matrix c/ is positive definite and,
therefore, non-singular. Similarly, in the case of rotation alone (a, = 0), it follows that

the equality sign holding ifand only ifI, = O. Thus, the 6 x 6matrix KlJ is positivedefinite,and, therefore, non-singular.

APPENDIX C
Consider JrI.,;emk!L)({" {2' {,) d{, where r is a simple closed contour in the complex 6 plane enclosing all the zeros of

L({,) =0. Now the integrand is O({,-') as I{,I-+oo, and the residue at infinity is given by'

which has the form
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An inspectionof the latter showsthat thedominant term above corresponds to the coefficientof ~,' in It'mk,and thedominant term
below corresponds to the coefficient of ~,' in L ; the latter term is given by c,.,,-the determinant with elements c,.,,-while the
former term is given by b,.,,-the cofactor corresponding to the element c,.". In view of the foregoing, Cauchy's Theorem
yields

Arguments similar to those employed in Appendix A (post (AI» yield

Writing

(Cl) and (C2) yield

(C3)

and

(C4)


